

INTRODUCTION TO FUNCTIONS

- Set theory
- Cartesian product
- Relations

Function

· Domain, co-domain and range

Show that relation R defined on the set of real numbers such that $R = \{(a, b) : a > b\}$ is transitive.

Solution

Let $(a, b) \in R$ and $(b, c) \in R$.

- \Rightarrow a > b and b > c
- $\Rightarrow a > c$
- \Rightarrow (a, c) \in R

Therefore, R is a transitive relation.

Let T be the set of all the triangles in a plane with R as a relation given by $R = \{(T_1, T_2):$ T_a is congruent to T_a . Show that R is an equivalence relation.

Solution

- (1) Every triangle is congruent to itself. Therefore, R is reflexive.
- (2) $(T_1, T_2) \in R : T_1$ is congruent to T_2 . \Rightarrow T₂ is congruent to T₁. Therefore, R is symmetric.
- (3) $(T_1, T_2) \in R : T_1$ is congruent to T_2 . $(T_2, T_3) \in R : T_2$ is congruent to T_3 . \Rightarrow T₁ is congruent to T₂.

Therefore, R is transitive.

Thus, the given relation R is an equivalence relation.

Functions

If A and B are two non-empty sets such that each element of A is associated with a unique element of B under the rule $f: A \to B$ (where A is the domain and B is the codomain of the function), then $f: A \to B$; y = f(x) is known as the function.

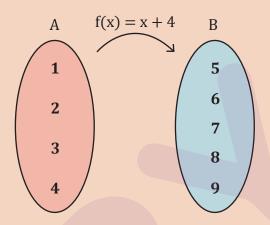
Here, y is a dependent variable and x is an independent variable.

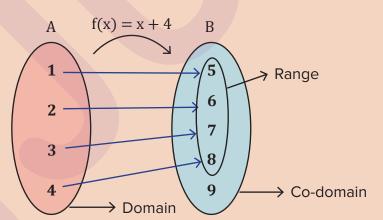
Note

- A function is also known as mapping, association, or correspondance.
- Range ⊆ Codomain

Example:

If $A = \{1, 2, 3, 4\}$ and $B = \{5, 6, 7, 8, 9\}$, then represent f(x) = x + 4 using mapping.





Here, Range ⊆ Codomain

Also, f(1) = 5

Here, 5 is the image of 1 and 1 is the preimage of 5.

Set of preimages = $\{1, 2, 3, 4\}$

Set of images = $\{5, 6, 7, 8\}$

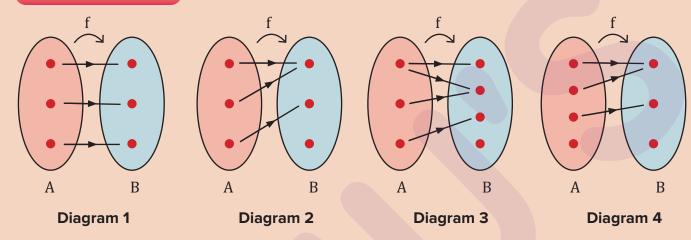
Function Identification

A function can be identified by the following three methods:

By rules

- For every x, there should be a y.
- For every x, there should be only one y.

Mapping method



- 1. All the inputs have only one output. It is a function.
- 2. All the inputs have only one output. It is a function.
- 3. The first element has two outputs. It is not a function.
- 4. The last element does not have any output. It is not a function.

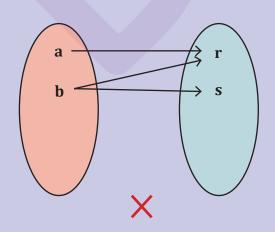
If $X = \{a, b, c, d, e\}$ and $Y = \{p, q, r, s, t\}$, then which of the following subset(s) of $X \times Y$ is/ are function(s) from X to Y.

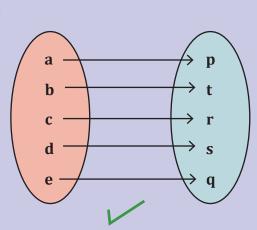
(a) $\{(a, r) (b, r) (b, s) (d, t) (e, q) (c, q)\}$ (b) $\{(a, p) (b, t) (c, r) (d, s) (e, q)\}$

(c) {(a, r) (b, p) (c, t) (d, q)}

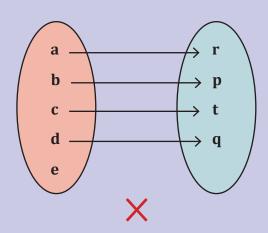
(d) {(a, r) (b, r) (c, r) (d, r) (e, r)}

Solution

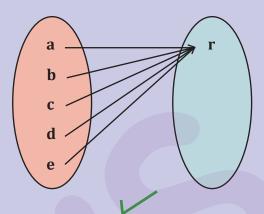




(c)



(d)



From the diagram, it is clear that,

- a. b has two outputs. It is not a function.
- b. All the inputs have only one output. It is a function.
- c. Element e does not have any output. It is not a function.
- d. All the inputs have only one output r. It is a function.

Thus, options (b) and (d) are the correct answers.

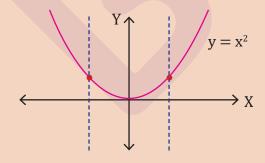
Vertical line test

A graph is known to be a function if the vertical line drawn parallel to the Y-axis does not intersect the graph at more than one point in the domain.

Examples

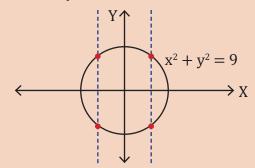
The vertical line intersects the graph of $y = x^2$ at one point only.

Hence, $y = x^2$ is a function.



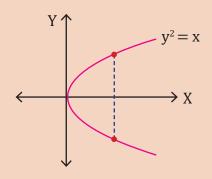
The vertical line intersects the graph of $x^2 + y^2 = 9$ at two points.

Hence, $x^2 + y^2 = 9$ is not a function.



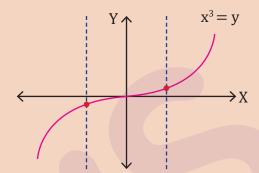
The vertical line intersects the graph of $y^2 = x$ at two points.

Hence, $y^2 = x$ is not a function.



The vertical line intersects the graph of $y = x^3$ at one point only.

Hence, $y = x^3$ is a function.



Graphical method

A graph can be made by the following three methods:

Using wavy curve me

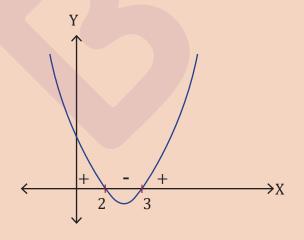
Using transformation

Using calculus

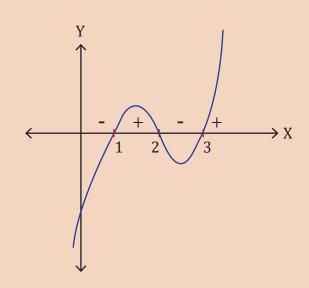
→ Using wavy curve method — This method is applicable only in those functions whose factorization is possible.

Wavy Curve Method

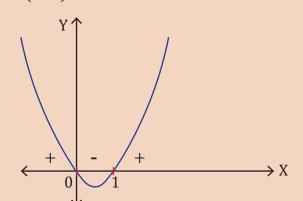
Draw the graph of $y = x^2 - 5x + 6$ $\Rightarrow y = (x - 2)(x - 3)$



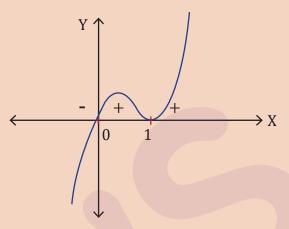
Draw the graph of $y = x^3 - 6x^2 + 11x - 6$ $\Rightarrow y = (x - 1)(x - 2)(x - 3)$



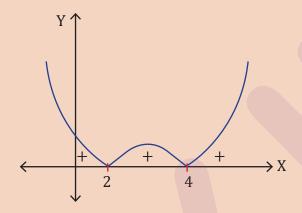
Draw the graph of $y = x^2 - x$ $\Rightarrow y = x(x - 1)$



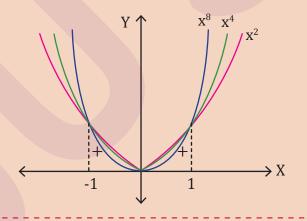
Draw the graph of $y = x(x - 1)^2$



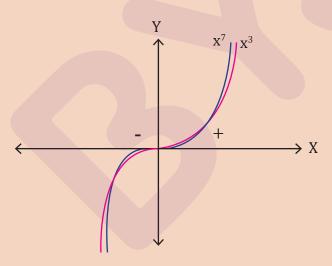
Draw the graph of $y = (x - 2)^2(x - 4)^4$



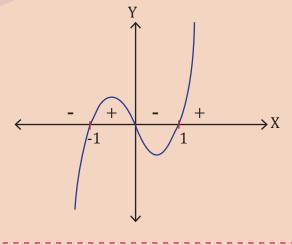
Draw the graph of $y = x^2$, x^4 , x^8



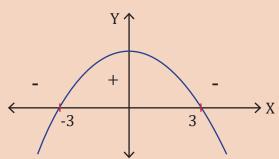
Draw the graph of $y = x^3$, x^7



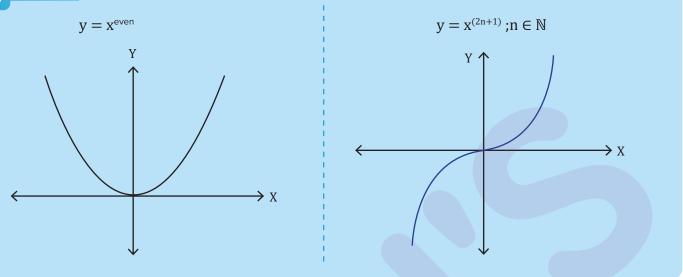
Draw the graph of $y = x^3 - x$ $\Rightarrow y = x(x^2 - 1)$



Draw the graph of $y = 9 - x^2$ y = -(x + 3)(x - 3)



Note



Domain, Co-domain, and Range of a Function

If function f is defined from a set A to a set B, then for f: A → B.
 A is known as the **domain** of function f and B is known as the **co-domain** of function f.
 The set of f-images of elements of A is known as the range of function f.

Domain: All the possible values of x for which f(x) exists **Range:** All the possible values of f(x) for all the values of x

Note

• Range is also known as a set of images or height of graph.

Function	Domain	Range
Polynomial function	\mathbb{R}	$\mathbb R$
Identity function	\mathbb{R}	$\mathbb R$
Constant function	$\mathbb R$	{c} (Value of constant)
Reciprocal function	$\mathbb{R}_{_0}$	$\mathbb{R}_{_0}$
Signum function	$\mathbb R$	{-1, 0, 1}

	\mathbb{R}	$\mathbb R$
$ax^3 + b$; $a, b \in \mathbb{R}$	\mathbb{R}	\mathbb{R}
x², x	R	R ⁺ ∪ 0 i.e., [0, ∞)
\mathbf{x}^3	\mathbb{R}	\mathbb{R}
x + x	\mathbb{R}	R+ ∪ 0 i.e., [0, ∞)
x - x	\mathbb{R}	ℝ ⁻ ∪ 0 i.e., (-∞, 0]
[x]	\mathbb{R}	\mathbb{Z}
x - [x]	\mathbb{R}	[0, 1)
<u>x </u> x	\mathbb{R}_0	{-1, 1}
$\sqrt{\mathbf{x}}$	[0,∞)	[0,∞)
a ^x (a > 0)	\mathbb{R}	\mathbb{R}^+ i.e., $(0,\infty)$
log x	\mathbb{R}^+ i.e., $(0,\infty)$	$\mathbb R$
sin x	\mathbb{R}	[-1, 1]
cos x	$\mathbb R$	[-1, 1]
tan x	\mathbb{R} - $\left\{ \left(2n+1\right)\frac{\pi}{2} \right\}$; $n \in \mathbb{Z}$	\mathbb{R}
cot x	\mathbb{R} - $\{n\pi\}$; $n \in \mathbb{Z}$	\mathbb{R}

sec x	\mathbb{R} - $\left\{\left(2n+1\right)\frac{\pi}{2}\right\}$; $n\in\mathbb{Z}$	(-∞, -1] ∪ [1, ∞)
cosec x	\mathbb{R} - $\{n\pi\}$; $n\in\mathbb{Z}$	(-∞, -1] ∪ [1, ∞)
sin ⁻¹ x	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
cos ⁻¹ x	[-1, 1]	[0, π]
tan ⁻¹ x	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
cot-1 x	\mathbb{R}	$(0,\pi)$
sec ⁻¹ x	(-∞, -1] ∪ [1, ∞)	$[0,\pi]-\left\{\frac{\pi}{2}\right\}$
cosec ⁻¹ x	(-∞, -1] ∪ [1, ∞)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$

Concept Check

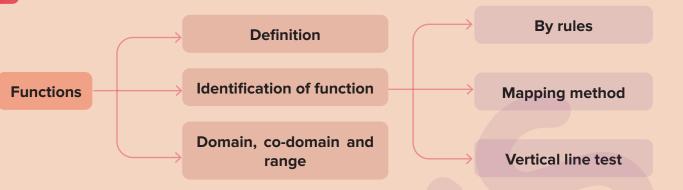
Find the domain and range of the following: $f(x) = x^4 + x^2 + 4$

Summary Sheet

Key Takeaways

- A function is a relation defined from set A to set B when it has the following properties:
 - (i) Each element of A is associated to some element in B.
 - (ii) The association is unique.
- A graph is known to be a function if the vertical line drawn parallel to the Y-axis does not intersect the graph at more than one point in the domain.
- **Domain**: It is the value of set A for which a function is defined.
- Range: It consists of all the values that the function gives.
- Co-domain: It consists of the set of all the elements in set B. (Range \subseteq Co-domain)

Mind Map



Self-Assessment

Find the domain and range of log(x-2)

Answers

Concept Check

Given, $f(x) = x^4 + x^2 + 4$

Since f(x) is a polynomial function, its domain is \mathbb{R} .

Let
$$y = x^4 + x^2 + 4$$

$$\Rightarrow$$
 y = x⁴ + x² + 4 + $\frac{1}{4}$ - $\frac{1}{4}$ (To make it perfect square)

$$\Rightarrow y = \left(x^2 + \frac{1}{2}\right)^2 + \frac{15}{4}$$

$$\Rightarrow y \ge \frac{1}{4} + \frac{15}{4}$$

$$\Rightarrow$$
 y \geq 4

∴ Range: [4, ∞)

Self Assessment

For a logarithmic function, the argument is always positive.

$$\Rightarrow$$
 x - 2 > 0

$$\Rightarrow x > 2$$

∴ Domain: $(2, \infty)$ Range: $f(x) \in \mathbb{R}$